date: 2019-03-25
tags: OS 6.828
本次作业会处理一个简单的用户的thread包,用于实现context switching.
下载uthread.c
和uthread_switch.S
,然后修改xv6的Makefile
需要写的代码在uthread_switch.S
里。
.text
/* Switch from current_thread to next_thread. Make next_thread
* the current_thread, and set next_thread to 0.
* Use eax as a temporary register; it is caller saved.
*/
.globl thread_switch
thread_switch:
/* YOUR CODE HERE */
# right now, the stack pointer points at stack of current_thread
pushal # save all registers
# switch to next_thread
movl next_thread, %eax
movl %eax, current_thread
movl $0, next_thread
movl (%eax), %esp # load stack address of next_thread
popal
ret /* pop return address from stack */
注意这里面的使用了uthread.c
中的结构:
struct thread {
int sp; /* saved stack pointer */
char stack[STACK_SIZE]; /* the thread's stack */
int state; /* FREE, RUNNING, RUNNABLE */
};
next_thread
和current_thread
都是struct thread *
。然后一个stack的结构在thread_create()
函数中体现了:
void
thread_create(void (*func)())
{
thread_p t;
for (t = all_thread; t < all_thread + MAX_THREAD; t++) {
if (t->state == FREE) break;
}
t->sp = (int) (t->stack + STACK_SIZE); // set sp to the top of the stack
t->sp -= 4; // space for return address
* (int *) (t->sp) = (int)func; // push return address on stack
t->sp -= 32; // space for registers that thread_switch expects
t->state = RUNNABLE;
}
也就是最上面是32byte用于pushal
和popal
,再上面就是线程对应的函数。
然后就运行就好了,注意运行的时候要加上CPUS=1
$ make CPUS=1 qemu-nox
qemu-system-i386 -nographic -drive file=fs.img,index=1,media=disk,format=raw -drive file=xv6.img,index=0,media=disk,format=raw -smp 1 -m 512
xv6...
cpu0: starting 0
sb: size 1000 nblocks 941 ninodes 200 nlog 30 logstart 2 inodestart 32 bmap start 58
init: starting sh
$ uthread
my thread running
my thread 0x2DC8
my thread running
my thread 0x4DD0
my thread running
...
这次的作业相当于补全了一个用户的thread库。这个库都体现在了uthread.c
中,为了之后查找方便,列在下面:
#include "types.h"
#include "stat.h"
#include "user.h"
/* Possible states of a thread; */
#define FREE 0x0
#define RUNNING 0x1
#define RUNNABLE 0x2
#define STACK_SIZE 8192
#define MAX_THREAD 4
typedef struct thread thread_t, *thread_p;
typedef struct mutex mutex_t, *mutex_p;
struct thread {
int sp; /* saved stack pointer */
char stack[STACK_SIZE]; /* the thread's stack */
int state; /* FREE, RUNNING, RUNNABLE */
};
static thread_t all_thread[MAX_THREAD];
thread_p current_thread;
thread_p next_thread;
extern void thread_switch(void);
void
thread_init(void)
{
// main() is thread 0, which will make the first invocation to
// thread_schedule(). it needs a stack so that the first thread_switch() can
// save thread 0's state. thread_schedule() won't run the main thread ever
// again, because its state is set to RUNNING, and thread_schedule() selects
// a RUNNABLE thread.
current_thread = &all_thread[0];
current_thread->state = RUNNING;
}
static void
thread_schedule(void)
{
thread_p t;
/* Find another runnable thread. */
next_thread = 0;
for (t = all_thread; t < all_thread + MAX_THREAD; t++) {
if (t->state == RUNNABLE && t != current_thread) {
next_thread = t;
break;
}
}
if (t >= all_thread + MAX_THREAD && current_thread->state == RUNNABLE) {
/* The current thread is the only runnable thread; run it. */
next_thread = current_thread;
}
if (next_thread == 0) {
printf(2, "thread_schedule: no runnable threads\n");
exit();
}
if (current_thread != next_thread) { /* switch threads? */
next_thread->state = RUNNING;
thread_switch();
} else
next_thread = 0;
}
void
thread_create(void (*func)())
{
thread_p t;
for (t = all_thread; t < all_thread + MAX_THREAD; t++) {
if (t->state == FREE) break;
}
t->sp = (int) (t->stack + STACK_SIZE); // set sp to the top of the stack
t->sp -= 4; // space for return address
* (int *) (t->sp) = (int)func; // push return address on stack
t->sp -= 32; // space for registers that thread_switch expects
t->state = RUNNABLE;
}
void
thread_yield(void)
{
current_thread->state = RUNNABLE;
thread_schedule();
}
static void
mythread(void)
{
int i;
printf(1, "my thread running\n");
for (i = 0; i < 100; i++) {
printf(1, "my thread 0x%x\n", (int) current_thread);
thread_yield();
}
printf(1, "my thread: exit\n");
current_thread->state = FREE;
thread_schedule();
}
int
main(int argc, char *argv[])
{
thread_init();
thread_create(mythread);
thread_create(mythread);
thread_schedule();
return 0;
}
相当于是thread主动进行yield来进行切换。